A Liouville type theorem for the Schrödinger operator
نویسندگان
چکیده
منابع مشابه
A Liouville-type theorem for Schrödinger operators
In this paper we prove a sufficient condition, in terms of the behavior of a ground state of a symmetric critical operator P1, such that a nonzero subsolution of a symmetric nonnegative operator P0 is a ground state. Particularly, if Pj := −∆ + Vj , for j = 0, 1, are two nonnegative Schrödinger operators defined on Ω ⊆ R such that P1 is critical in Ω with a ground state φ, the function ψ 0 is a...
متن کاملAn Lp-Lq-version Of Morgan's Theorem For The Generalized Fourier Transform Associated with a Dunkl Type Operator
The aim of this paper is to prove new quantitative uncertainty principle for the generalized Fourier transform connected with a Dunkl type operator on the real line. More precisely we prove An Lp-Lq-version of Morgan's theorem.
متن کاملA Liouville type theorem for a class of anisotropic equations
In this paper we are dealing with entire solutions of a general class of anisotropic equations. Under some appropriate conditions on the data, we show that the corresponding equations cannot have non-trivial positive solutions bounded from above.
متن کاملA Liouville Type Theorem for an Integral System
In this paper, we study a conjecture of J.Serrin and give a partial generalized result of the work of de Figueiredo and Felmer about Liouville type Theorem for non-negative solutions for an elliptic system. We use a new type of moving plane method introduced by Chen-Li-Ou. Our new ingredient is the use of Stein-Weiss inequality.
متن کاملA Liouville Type Theorem for Special Lagrangian Equations with Constraints
We derive a Liouville type result for special Lagrangian equations with certain “convexity” and restricted linear growth assumptions on the solutions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1999
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-99-05026-1